Diameter preserving linear bijections of C ( X )

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. FA ] 4 J ul 1 99 7 DIAMETER PRESERVING LINEAR BIJECTIONS OF C ( X )

The aim of this paper is to solve a linear preserver problem on the function algebra C(X). We show that in case X is a first countable compact Hausdorff space, every linear bijection φ : C(X) → C(X) having the property that diam(φ(f)(X)) = diam(f(X)) (f ∈ C(X)) is of the form φ(f) = τ · f ◦ φ+ t(f)1 (f ∈ C(X)) where τ ∈ C, |τ | = 1, φ : X → X is a homeomorphism and t : C(X) → C is a linear func...

متن کامل

On Preserving Properties of Linear Maps on $C^{*}$-algebras

Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

embedding normed linear spaces into $c(x)$

‎it is well known that every (real or complex) normed linear space $l$ is isometrically embeddable into $c(x)$ for some compact hausdorff space $x$‎. ‎here $x$ is the closed unit ball of $l^*$ (the set of all continuous scalar-valued linear mappings on $l$) endowed with the weak$^*$ topology‎, ‎which is compact by the banach--alaoglu theorem‎. ‎we prove that the compact hausdorff space $x$ can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 1998

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s000130050268